
Andreas Harth, Katja Hose, Ralf Schenkel

Linked Data Management:
Principles and Techniques

2

List of Figures

1.1 Scenario: Alice’s Blog Post . 4
1.2 Interlinking example for GeoNames LIDS 13

3

4

List of Tables

1.1 Performance characteristics of Alice’s query 18
1.2 Performance characteristics of Alice’s query for other Persons 19

5

6

Contents

I This is a Part 1

1 Linked Data Services 3
Sebastian Speiser, Martin Junghans and Armin Haller
1.1 Introduction . 3
1.2 Scenario . 4
1.3 Information Services . 5
1.4 LInked Data Services (LIDS) 8
1.5 Describing Linked Data Services 10

1.5.1 Relation to Source Descriptions in Information Integra-
tion Systems . 11

1.5.2 Describing LIDS using RDF and SPARQL Graph Pat-
terns . 11

1.6 Interlinking Data with LIDS 12
1.7 Related Work . 14
1.8 Implementation and Evaluation 16

1.8.1 Realization of Scenario 16
1.8.2 Implementing and Interlinking Linked Data Services . 19

1.8.2.1 Implementing LIDS Services 19
1.8.2.2 Interlinking Existing Data Sets with LIDS . 20

1.9 Conclusion . 21

Bibliography 23

7

8

Part I

This is a Part

1

Chapter 1

Linked Data Services

Sebastian Speiser, Martin Junghans

Institute AIFB, Karlsruhe Institute of Technology (KIT)
Email: {speiser,junghans}@kit.edu

Armin Haller

CSIRO Computational Informatics, Australian National University
Email: armin.haller@csiro.au

1.1 Introduction . 3
1.2 Scenario . 4
1.3 Information Services . 5
1.4 LInked Data Services (LIDS) . 8
1.5 Describing Linked Data Services . 10

1.5.1 Relation to Source Descriptions in Information Integration Sys-
tems . 10
1.5.2 Describing LIDS using RDF and SPARQL Graph Patterns 11

1.6 Interlinking Data with LIDS . 12
1.7 Related Work . 14
1.8 Implementation and Evaluation . 16

1.8.1 Realization of Scenario . 16
1.8.2 Implementing and Interlinking Linked Data Services 19

1.8.2.1 Implementing LIDS Services . 19
1.8.2.2 Interlinking Existing Data Sets with LIDS 20

1.9 Conclusion . 21

1.1 Introduction

Information services are commonly provided via Web APIs based on Rep-
resentational State Transfer (REST) principles [6, 17] or via Web Services
based on the WS-* technology stack [5, 16]. Currently deployed information
services use HTTP as transport protocol, but return data as JSON or XML
which requires glue code to combine data from different APIs with informa-
tion provided as Linked Data. Linked Data interfaces for services have been
created, e.g., in form of the book mashup [3] which returns RDF data about
books based on Amazon’s API, or twitter2foaf which encodes the Twitter fol-
lower network of a given user based on the API provided by Twitter. However,
the interfaces are not formally described and thus the link between services
and data has to be established manually or by service-specific algorithms. For
example, to establish a link between person instances (e.g., described using the

3

4 Linked Data Management: Principles and Techniques

Engine

Flickr Images
Royal Family
Knowledge in

DBpedia

Blog Post

Alice

Information Access

GeoNames
Geographical Data

FIGURE 1.1: Scenario: Alice’s Blog Post

FOAF vocabulary1) and their Twitter account, one has to hard-code which
property relates people to their Twitter username and the fact that the URI
of the person’s Twitter representation is created by appending the username
to http://twitter2foaf.appspot.com/id/.

In this chapter, we present the LInked Data Services (LIDS) approach
for creating Linked Data interfaces to information services. The approach
incorporates formal service descriptions that enable (semi-)automatic service
discovery and integration. Specifically, we present the following components:
an access mechanism for LIDS interfaces based on generic Web architecture
principles (URIs and HTTP) (Section 1.4); a generic lightweight data service
description formalism, instantiated for RDF and SPARQL graph patterns
(Section 1.5); and an algorithm for interlinking existing data sets with LIDS
(Section 1.6). We discuss related work in Section 1.7. Finally, we evaluate our
approach in Section 1.8 and conclude in Section 1.9. Parts of this chapter were
previously presented in [20, 21, 19].

1.2 Scenario

This section introduces a scenario which we use to motivate, explain, and
validate our approach throughout the chapter.

We consider the example of Alice who wants to write a blog post about the
English royal family. For this, she needs a complete list of all descendants of
Queen Elizabeth II and for each descendant a photo with information about
where it was taken. Alice has access to a system that can answer declara-
tively the specified information needs by accessing information sources and

1http://www.foaf-project.org/

Linked Data Services 5

services, e.g., the Data-Fu system [22]. For Alice’s need the engine accesses
DBpedia, a database containing facts extracted from Wikipedia, to get the
descendants of Queen Elizabeth II; the Flickr API using the names of the
descendants to match photos; and the GeoNames API to determine from the
photos’ geographical locations a name for the place. In Figure 1.1 we visualize
the information access that Alice performs to create her blog post.

Linked Data sources cover to some extent the required information for our
scenario. Alice can find information about the royal family as Linked Data via
DBpedia which includes the names of the family members and also some links
to photos. The photos, however, are missing geographical information, so she
needs an alternative source of pictures. Flickr supports geographical informa-
tion for photos, but does not allow arbitrary access to their database. It only
allows access via a predefined service interface. Thus, to cover her informa-
tion needs, we have to integrate the Flickr services with the Linked Data from
DBpedia. Furthermore, to check which geographical feature with a human-
understandable name is near to the location of a photo, given as latitude and
longitude, she needs to invoke another service. She chooses the GeoNames
service which relates geographical points to nearby points of interests (e.g.,
the Buckingham Palace). This relation cannot be fully materialized but must
be provided as a service, as there is an infinite number of geographical points
which can be given with arbitrary precision.

In this scenario, we find information sources that cannot be materialized as
static data sets for various reasons: (i) data is constantly changing, e.g., new
photos are frequently uploaded to Flickr; (ii) data is generated depending on
input from a possibly infinite domain, e.g., the nearest geographical location
can be searched for arbitrary coordinates; (iii) the information provider does
not want to give arbitrary access to the information, e.g., Flickr only provides
access to individual photos or pre-defined types of queries in order to avoid
somebody copying the whole page. We denote such information sources as
information services, as they provide a restricted view on a potentially infinite
data set.

1.3 Information Services

Our notion of information services is as follows:

Information services return data dynamically at runtime (i.e., during ser-
vice call time) from the supplied input parameters. Information services
neither alter the state of some entity nor modify any data. In other words,
information services are free of any side effects. They can be seen as data
sources providing information about an entity based on a given input in
the form of a set of name/value pairs. The notion of information services

6 Linked Data Management: Principles and Techniques

include Web APIs and REST-based services providing output data in
XML or JSON.

Example 1. The Flickr API provides besides other functionality a fulltext
search for photos. To search for photos of Prince Charles which are tagged
as portraits and have geographic information the following URI can be used
(after adding an application-specific API key to the URI that allows Twitter
to monitor the API usage by each application):

http://api.flickr.com/services/rest/?method=flickr.photos.

search&text=charles,+prince+of+wales&format=json

with the following (abbreviated) result:

...

{"photos":{"page":1, "pages":12, "perpage":100, "total":"1122",

"photo":[{"id":"5375098012", "owner":"50667294@N08",

"secret":"c8583acbbe","server":"5285", "farm":6,

"title":"The Prince of Wales at

Queen Elizabeth Hospital Birmingham"},

{"id":"2614868465", "owner":"15462799@N00",

"secret":"50af5f09c9","server":"3149", "farm":4,

"title":"Prince Charles" ...},

{"id":"4472414639", "owner":"48399297@N04",

"secret":"cb8533c199","server":"4025", "farm":5,

"title":"HRH Prince Charles Visits Troops in Afghanistan"

...} ...] } }

The returned information is given in JSON in a service-specific vocabulary. To
retrieve further information about the first photo with the id “5375098012”,
we have to know service-specific rules to build the links to those informa-
tion sources, e.g., we can construct the URI http://farm6.staticflickr.com/

5285/5375098012_c8583acbbe.jpg according to the Flickr URI construction rules2

to access the JPEG of the actual photo; or we can access the following URI
to get further information on the photo:

http://api.flickr.com/services/rest/?method=flickr.photos.

getInfo&photo_id=5375098012&format=json

Retrieving the URI (again with appended API key) gives the following result:

{"photo":{"id":"5375098012", "secret":"c8583acbbe", "server":"5285",

"farm":6, "license":"6", ...

"location":{"latitude":52.453616,"longitude":-1.938303,...},

... }}

2http://www.flickr.com/services/api/misc.urls.html

Linked Data Services 7

Using the retrieved geographical coordinates, we can build the URI for calling
the GeoNames findNearbyWikipedia service, which relates given latitude/-
longitude parameters to Wikipedia articles describing geographical features3

that are nearby. This requires first Flickr-specific knowledge how to extract the
latitude and longitude of the image and GeoNames-specific knowledge how to
construct the URI for a service call which is:

http://api.geonames.org/findNearbyWikipedia?lat=52.453616&lng=-1.938303

The (abbreviated) result is the following:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<geonames>

<entry>

<lang>en</lang>

<title>Birmingham Women’s Fertility Centre</title>

...

<lat>52.4531</lat>

<lng>-1.9389</lng>

<wikipediaUrl>

http://en.wikipedia.org/wiki/Birmingham_Women%27s_Fertility_Centre

</wikipediaUrl>

...

<distance>0.0702</distance>

</entry>

...

<entry>

<lang>en</lang>

<title>University (Birmingham) railway station</title>

...

<lat>52.451</lat>

<lng>-1.936</lng>

<wikipediaUrl>

http://en.wikipedia.org/wiki/University_Birmingham_railway_station

</wikipediaUrl>

<distance>0.3301</distance>

</entry>

...

</geonames>

This simple example shows that integrating data from several (in this case
only two) services is difficult for the following reasons:

• different serialization formats are used (e.g., JSON, XML);

• entities are not represented explicitly, and are thus difficult to identify
between different services. For example, the geographical point returned

3GeoNames classifies geographical features into nine classes with 645 subcodes. Such
features comprise states, roads, and mountains for example.

8 Linked Data Management: Principles and Techniques

by the Flickr API does not occur in the output of the GeoNames ser-
vice. Therefore it is not possible to link the results based on the service
outputs alone, but only with service-specific gluing code.

1.4 LInked Data Services (LIDS)

Linked Data Services provide a Linked Data interface for information ser-
vices. To make these services adhere to Linked Data principles a number of
requirements have to be fulfilled:

• the input for a service invocation with given parameter bindings must
be identified by a URI;

• resolving that URI must return a description of the input entity, relating
it to the service output data; and

• RDF descriptions must be returned.

We call such services Linked Data Services (LIDS).

Example 2. Inputs for the LIDS version of the findNearbyWikipedia ser-
vice are entities representing geographical points given by latitude and lon-
gitude, which are encoded in the URI of an input entity. Resolving such an
input URI returns a description of the corresponding point which relates it to
Wikipedia articles about geographical features which are nearby.

Defining that the URI of a LIDS call identifies an input entity is an impor-
tant design decision. Compared to the alternative – directly identifying output
entities with service call URIs – identifying input entities has the following
advantages:

• the link between input and output data is made explicit;

• one input entity (e.g., a geographical point) can be related to several
results (e.g., Wikipedia articles);

• the absence of results can be easily represented by a description without
further links;

• the input entity has a constant meaning although data can be dynamic
(e.g., the input entity still represents the same point, even though a
subsequent service call may relate the input entity to new or updated
Wikipedia articles).

More formally we characterize a LIDS by:

Linked Data Services 9

• Linked Data Service endpoint HTTP URI uriep.

• Local identifier i for the input entity of the service.

• Inputs Xi: names of parameters.

The URI uriXi
of a service call for a parameter assignment µ (mapping Xi to

corresponding values) and a given endpoint URI uriep is constructed in the
following way. We use the Kleene star to notate arbitrary repetition of the
group (zero or more times).

uriXi
:= uriep

[
?Xi=µ(Xi)&

]∗
.

That is, for each x ∈ Xi, we add a parameter and its value µ(x) to the URI
uriXi . Additionally we introduce an abbreviated URI schema that can be used
if there is only one required parameter (i.e. |Xi| = 1, Xi = {x}):

uriXi := uriep/µ(x).

Please note that the above definition coincides with typical Linked Data URIs.
We define the input entity that is described by the output of a service call as

inpXi
= uriXi

#i.

Example 3. We illustrate the principle using the openlids.org wrapper for
GeoNames4 findNearbyWikipedia. The wrapper is a LIDS, defined by:

• endpoint ep = gw:findNearbyWikipedia;

• local identifier i = point;

• inputs Xi = {lat, lng}.

For a binding µ = {lat 7→ 52.4536, lng 7→ −1.9383} the URI for the service call
is gw:findNearbyWikipedia?lat=52.4536&lng=-1.9383 and returns the following
description:

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

gw:findNearbyWikipedia?lat=52.4536&lng=-1.9383#point

foaf:based_near dbpedia:Centre_for_Human_Reproductive_Science;

...

foaf:based_near

dbpedia:University_%28Birmingham%29_railway_station.

dbpedia:Centre_for_Human_Reproductive_Science

geo:lat "52.453";

4http://km.aifb.kit.edu/services/geonameswrap/, abbreviated as gw.

10 Linked Data Management: Principles and Techniques

geo:long "-1.9388".

dbpedia:University_%28Birmingham%29_railway_station

geo:lat "52.451";

geo:long "-1.936".

...

1.5 Describing Linked Data Services

In this section, we define an abstract model of LIDS descriptions.

Definition 1. A LIDS description consists of a tuple (uriep, CQi, To, i) where
uriep denotes the LIDS endpoint URI, CQi = (Xi, Ti) a conjunctive query,
with Xi the input parameters and Ti the basic graph pattern specifying the
input to the service, To a basic graph pattern describing the output data of the
service, and i the local identifier for the input entity.

We defineXi to be the selected variables of a conjunctive query whose body
specifies the required relation between the input parameters. To specifies the
minimum output that is returned by the service for valid input parameters.
More formally:

• µ ∈M5 is a valid input, if dom(µ) = Xi;

• for a valid µ, constructing uriXi
returns a graph Do, such that

∀µ′.
(
µ′ ∈ [[To]]Dimpl

∧ µ′ ∼ µ
)
→ µ′(To) ⊆ Do,

where Dimpl is the potentially infinite virtual data set representing the
information provided by the LIDS.

Example 4. We describe the findNearbyWikipedia openlids.org wrapper
service as (uriep, CQi, To, i) with:

uriep =gw:findNearbyWikipedia

CQi =({lat, lng}, {?point geo:lat ?lat . ?point geo:long ?lng})
To ={?point foaf:based near ?feature}
i =point

5M is the set of all variables bindings.

Linked Data Services 11

1.5.1 Relation to Source Descriptions in Information Inte-
gration Systems

Note that the LIDS descriptions can be transformed to source descrip-
tions with limited access patterns in a Local-as-View (LaV) data integration
approach [7]. With LaV, the data accessible through a service is described as
a view in terms of a global schema. The variables of a view’s head predicate
that have to be bound in order to retrieve tuples from the view are prefixed
with a $. For a LIDS description (uriep, CQi, To, i), we can construct the LaV
description:

uriep($I1, . . . , $Ik, O1 . . . , Om) :- pi1(. . .), . . . , pin(. . .), po1(. . .), . . . , pol (. . .).

Where CQi = (Xi, Ti), with Xi = {I1, . . . , Ik} and
Ti = {(si1, pi1, oi1), . . . , (sin, p

i
n, o

i
n)}, To = {(so1, po1, oo1), . . . , (sol , p

o
l , o

o
l)}, and

vars(To) \ vars(Ti) = {O1, . . . , Om}.
We propose for LIDS descriptions the separation of input and output con-

ditions for three reasons: (i) the output of a LIDS corresponds to an RDF
graph as described by the output pattern in contrast to tuples as it is com-
mon in LaV approaches, (ii) it is easier to understand for users, and (iii) it is
better suited for the interlinking algorithm as shown in Section 1.6.

1.5.2 Describing LIDS using RDF and SPARQL Graph Pat-
terns

In the following we present how LIDS descriptions can be represented in
RDF, thus enabling that LIDS descriptions can be published as Linked Data.
The basic format is as follows (unqualified strings consisting only of capital
letters are placeholders and explained below):

@prefix lids: <http://openlids.org/vocab#>

LIDS a lids:LIDS;

lids:lids_description [

lids:endpoint ENDPOINT ;

lids:service_entity ENTITY ;

lids:input_bgp INPUT ;

lids:output_bgp OUTPUT ;

lids:required_vars VARS] .

The RDF description is related to our abstract description formalism in the
following way:

• LIDS is a resource representing the described Linked Data service;

• ENDPOINT is a URI uriep;

• ENTITY is the name of the entity i;

12 Linked Data Management: Principles and Techniques

• INPUT and OUTPUT are basic graph patterns encoded as a string using
SPARQL syntax. INPUT is mapped to Ti and OUTPUT is mapped to To.

• VARS is a string of required variables separated by blanks, which is
mapped to Xi.

From this mapping, we can construct an abstract LIDS description
(uriep, (Xi, Ti), To, i) for the service identified by LIDS.

Example 5. In the following we show the RDF representation of the formal
LIDS description from Example 4:

:GeowrapNearbyWikipedia a lids:LIDS;

lids:lids_description [

lids:endpoint

<http://km.aifb.kit.edu/services/geonameswrap/findNearbyWikipedia>;

lids:service_entity "point" ;

lids:input_bgp "?point a Point . ?point geo:lat ?lat .

?point geo:long ?long" ;

lids:output_bgp "?point foaf:based_near ?feature" ;

lids:required_vars "lat long"] .

In the future, we expect a standardized RDF representation of SPARQL
which does not rely on string encoding of basic graph patterns. One such
candidate is the SPIN SPARQL Syntax6 which is part of the SPARQL Infer-
encing Notation (SPIN)7. We are planning to re-use such a standardized RDF
representation of basic graph patterns and variables in future versions of the
LIDS description model.

1.6 Interlinking Data with LIDS

In the following, we describe how existing data sets can be automatically
enriched with links to LIDS in different settings. Consider for example:

• the processing of a static data set, inserting links to LIDS and storing
the new data;

• a Linked Data server that dynamically adds links to LIDS;

• a data browser that augments retrieved data with data retrieved from
LIDS.

6http://spinrdf.org/sp.html
7http://spinrdf.org/

Linked Data Services 13

We present a technique that, based on a fixed local dataset, determines
and invokes the appropriate LIDS and adds the output to the local dataset.

Given an RDF graph G and a LIDS description l = (uriep, CQi =
(Xi, Ti), To, i), we obtain the equivalences between µ(i) and inpXi

= uriXi
#i

for each valid input µ ∈ [[Ti]]G. These equivalences can be either used to im-
mediately resolve the LIDS URIs and add the data to G, or to make the
equivalences explicit in G, for example, by adding the following triples to G:

for all µ ∈ [[Ti]]G do
G← G,µ(i) owl:sameAs inpXi

Go ← invoke uriXi

G← G,Go

end for

Retrieve
Data

Add Data to
DS

Interlink
LIDS

Add Links to
DS

Data Set (DS)

Web

#photo537

-1.93 52.45

latlong

...?lng=-1.93&
lat=52.45#point

owl:sameAs

dbp:FertCentre

dbp:UniStat

based_near

GeoNames
LIDS Desc

Flickr
LIDS Desc

FIGURE 1.2: Interlinking example for GeoNames LIDS

We illustrate the algorithm using LIDS versions of the Flickr API and
the GeoNames services. The example and the algorithm are visualized in Fig-
ure 1.2. A more formal definition of the algorithm can be found in [19]. Con-
sider a photo #photo537 for which Flickr returns an RDF graph with latitude
and longitude properties:

#photo537 rdfs:label "The Prince of Wales ...";

geo:lat "52.453616";

geo:long "-1.938303".

14 Linked Data Management: Principles and Techniques

In the first step, the data is matched against the available LIDS descriptions
(for brevity we assume a static set of LIDS descriptions) and a set of bindings
are derived. Further processing uses the GeoNames LIDS which accepts lati-
tude/longitude as input. After constructing a URI which represents the service
entity, an equivalence (owl:sameAs) link is created between the original entity
#photo537 and the service entity:

#photo537 owl:sameAs

gw:findWikipediaNearby?lat=52.453616&long=-1.938303#point.

Next, the data from the service entity URI can be retrieved to obtain the
following data:

@prefix dbpedia: <http://dbpedia.org/resource/> .

gw:findWikipediaNearby?lat=52.453616&lng=-1.938303#point

foaf:based_near foaf:based_near dbpedia:FertCentre

foaf:based_near dbpedia:UniStation.

...

Please observe that by equating the URI from the input data with the LIDS
entity URI, we essentially add the returned foaf:based_near statements to
#photo537. Should the database underlying the service change, a lookup on
the LIDS entity URI returns the updated data which can then be integrated.
As such, entity URIs can be linked in the same manner as plain Linked Data
URIs.

1.7 Related Work

Our work provides an approach to open up data silos for the Web of
Data. Previous efforts in this direction are confined to specialized wrappers,
for example the book mashup [3]. We presented the basic concepts of LIDS
in [20] and developed the algorithm for interlinking data with LIDS in [21].
Other state-of-the-art data integration systems [24] use wrappers to generate
RDF and then publish that RDF online rather than providing access to the
services that generate RDF directly. In contrast to these ad-hoc interfaces,
we provide a uniform way to construct such interfaces, and thus our work is
applicable not only to specific examples but generally to all kinds of data silos.
Furthermore, we present a method for formal service description that enables
the automatic service integration into existing data sets.

SILK [26] enables the discovery of links between Linked Data from dif-
ferent sources. Using a declarative language, a developer specifies conditions
that data from different sources has to fulfill to be merged, optionally using
heuristics in case merging rules can lead to ambiguous results. In contrast,

Linked Data Services 15

we use Linked Data principles for exposing content of data-providing services,
and specify the relationship between existing data and data provided by the
service using basic graph patterns. Alternatively, the LIDS approach could
also be adapted to use the SILK language for input conditions.

There exists extensive literature about semantic descriptions of Web Ser-
vices. We distinguish between two kinds of works: (i) general Semantic Web
Service (SWS) frameworks, and (ii) stateless service descriptions.

General SWS approaches include OWL-S [27] and WSMO [18] and aim at
providing extensive expressivity in order to formalize every kind of Web Ser-
vice, including complex business services with state changes and non-trivial
choreographies. The expressivity comes at a price: SWS require complex mod-
eling even for simple data services using formalisms that are not familiar to all
Semantic Web developers. Considering that, implementations of WSMO [8]
did use controlled state Abstract State Machines to procedurally model parts
of a choreography [4]. In contrast, our approach focuses on simple informa-
tion services and their lightweight integration with Linked Data via standard
graph patterns.

Closely related to our service description formalism are works on semantic
descriptions of stateless services (e.g., [10, 29, 11, 28]). Similar to our approach
these solutions define service functionality in terms of input and output con-
ditions. The approaches in [10, 29] employ proprietary description formalisms,
[11] uses SAWSDL and SPARQL whereby [28] is assuming the service to be
an information service that only adds properties to an input type defined by
an ontology. In contrast, our approach relies on standard basic graph pat-
terns. Moreover, our work provides a methodology to provide a Linked Data
interface to services.

Norton and Krummenacher propose an alternative approach to integrate
Linked Data and services, so-called Linked Open Services (LOS) [15]. LOS de-
scriptions also use basic graph patterns for defining service inputs and outputs.
One difference is that our work uses name-value pairs for parameters whereas
LOS consume RDF. Thus, in contrast to LOS, the LIDS approach allows that
service calls are directly linkable from within Linked Data, as service inputs
are encoded in the query string of a URI. The RESTdesc approach semanti-
cally describes REST services using N3 [25]. While RESTdesc also uses BGPs
as part of N3 for input and output description, the described services are not
confined to communicate RDF. Thus, RESTdesc services require additional
measures to integrate with Linked Data.

Mediator systems (e.g. Information Manifold [14]) are able to answer
queries over heterogeneous data sources, including services on the Web.
Information-providing data services are explicitly treated, e.g. in [23, 1]. For
an extensive overview of query answering in information integration systems,
we refer the interested reader to [7]. All these works have in common that they
generate top-down query plans, which is possible because of the completely
known schema of the targeted relational databases. In contrast, our proposed
approach employs a data-driven approach, where service calls are constructed

16 Linked Data Management: Principles and Techniques

when enough input data is found, and services are invoked if they are relevant
for the data at hand.

1.8 Implementation and Evaluation

In Section 1.8.1, we apply our approach in a proof-of-concept solution for
the scenario presented in Section 1.2 to show the feasibility of our proposed
methods. Besides the feasibility study, we present results of experiments to
measure the performance of interlinking of LIDS with existing datasets in
Section 1.8.2.

1.8.1 Realization of Scenario

For realizing the scenario from Section 1.2, we extended the interlink algo-
rithm to expand the underlying dataset automatically by retrieving dynam-
ically discovered Linked Data URIs similar to Linked Data query processors
such as [9, 13]. On the resulting dataset, we support the evaluation of SPARQL
queries. The implementation of the extended algorithm resulted in the Data-
Fu Engine [22].

Alice wants to get a list of the descendants of Queen Elizabeth II and for
each descendant a picture together with geographical information where it
was taken. To gather the information she formulates the following query:

prefix vocab: <http://openlids.org/examples/ezII/vocab#>

prefix dbpo: <http://dbpedia.org/ontology/>

prefix dbp: <http://dbpedia.org/resource/>

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix flickrlids: <http://openlids.org/flickrlids/vocab#>

SELECT ?n ?p ?f WHERE {

dbp:Elizabeth_II vocab:hasDescendant ?x .

?x foaf:name ?n .

?x foaf:depiction ?p . ?p flickrlids:hasLocation ?loc .

?loc foaf:based_near ?f

}

The relevant triples that the Linked Data query engine can obtain when deref-
erencing http://dbpedia.org/resource/Elizabeth_II are as follows:

dbp:Anne,_Princess_Royal dbpo:parent dbp:Elizabeth_II .

dbp:Charles,_Prince_of_Wales dbpo:parent dbp:Elizabeth_II .

dbp:Prince_Andrew,_Duke_of_York dbpo:parent dbp:Elizabeth_II .

dbp:Prince_Edward,_Earl_of_Wessex dbpo:parent dbp:Elizabeth_II .

Linked Data Services 17

We notice that the data contains the dbpo:parent property instead of the
queried vocab:hasDescendant property. We formalize the relation of the
properties, i.e., that vocab:hasDescendant is the transitive closure of the
inverse of dbpo:parent, with the following rules:

prefix vocab: <http://openlids.org/examples/ezII/vocab#>

prefix dbpo: <http://dbpedia.org/ontology/>

CONSTRUCT { ?x vocab:hasDescendant ?y } WHERE {

?y dbpo:parent ?x

}

CONSTRUCT { ?x vocab:hasDescendant ?z } WHERE {

?x vocab:hasDescendant ?y .

?y vocab:hasDescendant ?z

}

Together with this background knowledge, we can derive a list of descendants
(bindings for ?x) and their names (bindings for ?n). In the following, we list
an excerpt of the bindings:

?x => dbp:Charles,_Prince_of_Wales ?n => "Prince Charles"

?x => dbp:Anne,_Princess_Royal ?n => "Princess Anne"

?x => dbp:Prince_Andrew,_Duke_of_York ?n => "Prince Andrew"

?x => dbp:Prince_Edward,_Earl_of_Wessex ?n => "Prince Edward"

?x => dbp:Peter_Phillips ?n => "Peter Phillips"

?x => dbp:Zara_Phillips ?n => "Zara Phillips"

?x => dbp:Prince_William,_Duke_of_Cambridge ?n => "Prince William"

?x => dbp:Prince_Harry_of_Wales ?n => "Prince Harry"

?x => dbp:Princess_Beatrice_of_York ?n => "Princess Beatrice"

?x => dbp:Princess_Eugenie_of_York ?n => "Princess Eugenie"

?x => dbp:Lady_Louise_Windsor ?n => "Lady Louise Windsor"

?x => dbp:James,_Viscount_Severn ?n => "Viscount Severn"

?x => dbp:Laura_Lopes ?n => "Laura Lopes"

Note that Laura Lopes is returned as a result as her relation to her stepfather
Prince Charles is modeled in DBpedia using the dbpo:parent property. Fur-
ther note that the children Savannah Phillips and Isla Elizabeth Phillips of
Peter Phillips were not yet represented in the accessed DBpedia version and
are thus missing.

While some of the descendants binding to ?x have associated pictures
linked via the foaf:depiction property, none of them has geographic infor-
mation. So, we have to invoke the LIDS version of the Flickr service to retrieve
additional photos with geographical information. We wrapped the Flickr API
so that it takes the name of a person and returns a list of photos of the person
together with their locations. The LIDS description is given as follows:

:FlickrLIDS a lids:LIDS;

18 Linked Data Management: Principles and Techniques

TABLE 1.1: Performance characteristics of Alice’s query

Measurements live mode proxy mode
Number of results 2,402 2,402
Number of retrieved IRIs 1,411 1,411
Run time 265.66 s 11.59 s

lids:lids_description [

lids:endpoint

<http://km.aifb.kit.edu/services/flickrlids/depictions>;

lids:service_entity "person" ;

lids:input_bgp "?person foaf:name ?name";

lids:output_bgp "?person foaf:depiction ?p .

?p :hasLocation ?loc .

?loc geo:lat ?lat . ?loc geo:long ?long" ;

lids:required_vars "name"] .

Furthermore the LIDS version of the GeoNames service has to be invoked (as
described in Section 1.4) to find nearby located geographical features given
the latitude and longitude of a picture. Finally in our experiments we obtained
358 results from which Alice can select one result per descendant. For example
the result for Prince Charles is:

?n => "Charles, Prince of Wales"

?p => <http://farm6.staticflickr.com/5285/5375098012_c8583acbbe.jpg>

?f => dbp:Centre_for_Human_Reproductive_Science

Efficiency of Answering Alice’s Query
In the following, we present performance characteristics of executing Al-

ice’s query about Queen Elizabeth II’s descendants and pictures of them with
geographical information. The experiment was run on a virtual machine with
4 CPU cores of the Intel x64 architecture, each running with 2.26 GHz and
total RAM of 8 GB. The virtual machine was hosted in KIT’s Open Nebula
cloud. The experiment was either run live accessing the actual Linked Data
on the Web, or in proxy mode, where data is cached in a local instance of
the Cumulus RDF store [12]. Cumulus RDF is an HTTP proxy that serves
Linked Data stored in a Cassandra backend.

The Flickr LIDS and GeoNames LIDS were hosted locally on the machine
performing the query in live mode, but the LIDS had to access the wrapped
services (i.e., the Flickr API and the GeoNames services) on the Web. The
retrieved quads were loaded into a Cumulus RDF instance and the query re-
peated in proxy mode. The measurements of both runs are shown in Table 1.1.

Not surprisingly, both live and proxy mode retrieved the same number
of information sources and yielded the same results, as the proxy mode uses
exactly the data that was retrieved by the live run. The run time of proxy
mode is naturally much lower than that of live mode and shows that the query

Linked Data Services 19

TABLE 1.2: Performance characteristics of Alice’s query for other Persons

Persons Number of
results

Number of
IRIs

Run time

Bill Clinton 204 114 31.15 s
Mohamed Al-Fayed 135 115 36.72 s
Cher 55 75 25.33 s
Nigel Lawson 180 101 26.17 s
Queen Silvia of Sweden 398 351 69.52 s
Barbara Bush 159 137 26.00 s
Princess Irene (Netherlands) 50 77 25.11 s
Prince Edward 116 124 39.06 s
Nancy Pelosi 35 73 27.64 s
Constantine II of Greece 74 122 30.09 s
Diana Quick 5 39 25.06 s
Dick Cheney 265 194 46.97 s

execution adds only a little overhead compared to the time for accessing data
and services on the Web, which makes up 95.6 % of total execution time.

Queen Elizabeth II has a large number of descendants with many Flickr
photos. We thus performed the query for a number of persons to show that the
approach can be applied in other situations without any customization. We
selected twelve random persons from DBpedia who fulfill three requirements:
(i) born on or after January 1st, 1925 (persons born before this date rarely have
photos on Flickr); (ii) have at least one child recorded on DBpedia; (iii) are
still alive (according to DBpedia). The queries were performed in live mode
and the results are recorded in Table 1.2. The results show that our approach
facilitates an easy adaption of a query to different information needs.

1.8.2 Implementing and Interlinking Linked Data Services

We first present several LIDS services which we have made available, and
then cover the evaluation of performance and effectiveness of the presented
algorithm for interlinking Linked Data with LIDS. Source code and test data
for the implementation of the interlinking algorithm, as well as other general
code for handling LIDS and their descriptions can be found online8. All ex-
periments were conducted on a 2.4 GHz Intel Core2Duo laptop with 4 GB of
main memory.

1.8.2.1 Implementing LIDS Services

In this section, we show how we applied the LIDS approach to construct
publicly available Linked Data interfaces for selected existing services.

The following services are hosted on Google’s App Engine cloud environ-

8http://code.google.com/p/openlids/

20 Linked Data Management: Principles and Techniques

ment. The services are also linked on http://openlids.org/ together with their
formal LIDS descriptions and further information, such as IRIs of example
entities.

• GeoNames Wrapper9 provides three functions:

– finding the nearest GeoNames feature to a given point,

– finding the nearest GeoNames populated place to a given point,

– linking a geographic point to resources from DBpedia that are
nearby.

• GeoCoding Wrapper, returning the geographic coordinates of a street
address.

• Twitter Wrapper10 links Twitter account holders to the messages they
post.

The effort to produce a LIDS wrapper is typically low. The interface code
that handles the service IRIs and extracts parameters can be realized by stan-
dardized code or even generated automatically from a LIDS description. The
main effort lies in accessing the service and generating a mapping from the
service’s native output to a Linked Data representation. For some services it
is sufficient to write XSLTs that transform XML to RDF, or simple pieces of
procedural code that transform JSON to RDF. Effort is higher for services
that map Web page sources, as this often requires session and cookie handling
and parsing of faulty HTML code. However, the underlying data conversion
has to be carried out whether or not LIDS are used. Following the LIDS prin-
ciples is only a minor overhead in implementation; adding a LIDS description
requires a SPARQL query to describe the service.

1.8.2.2 Interlinking Existing Data Sets with LIDS

We implemented a streaming version of the interlinking algorithm shown
in Section 1.6 based on NxParser11. For evaluation of the algorithm’s per-
formance and effectiveness we interlinked the Billion Triple Challenge (BTC)
2010 data set12 with the findNearby geowrapper. In total the data set con-
sisted of 3,162,149,151 triples and was annotated in 40,746 seconds (< 12
hours) plus about 12 hours for uncompressing the data set, result cleaning,
and statistics gathering. In the cleaning phase we filtered out links to the
geowrapper that were redundant, i.e., entities that were already linked to
GeoNames, including the GeoNames data set itself. The original BTC data
contained 74 different domains that referenced GeoNames IRIs. Our interlink-
ing process added 891 new domains that are now linked to GeoNames via the

9http://km.aifb.kit.edu/services/geowrap/
10http://km.aifb.kit.edu/services/twitterwrap/
11http://sw.deri.org/2006/08/nxparser/
12http://km.aifb.kit.edu/projects/btc-2010/

Linked Data Services 21

geowrap service. In total 2,448,160 new links were added13. Many links re-
ferred to the same locations, all in all there were links to ca. 160,000 different
geowrap service calls. These results show that even with a very large data set,
interlinking based on LIDS descriptions is feasible on commodity hardware.
Furthermore, the experiment showed that there is much idle potential for links
between data sets, which can be uncovered with our approach.

1.9 Conclusion

A large portion of data on the Web is attainable through a large number
of data services with a variety of interfaces that require procedural code for
the integration of different data sources. We presented a general method for
exposing data services as Linked Data, which enables the integration of differ-
ent data sources without specialized code. Our method includes an interface
convention that allows service inputs to be given as URIs and thus linked from
other Linked Data sources. By exposing URIs for service inputs in addition
to service outputs, the model neatly integrates with existing data, can han-
dle multiple outputs for one input and makes the relation between input and
output data explicit.

Furthermore, we proposed a lightweight description formalism and showed
how it can be used for automatically interlinking Linked Data Services with
appropriate data sets. We showed how the descriptions can be instantiated
in SPARQL. We applied our method to create LIDS for existing real-world
service, thus contributing new data to the Web. The approach was evaluated
for performance and effectiveness in an experiment in which we interlinked
the Billion Triple Challenge (BTC) 2010 data set with the GeoNames LIDS
wrapper. We showed that the algorithm scales even to this very large data set
and produces large numbers (around 2.5 million) of new links between entities

In the following, we outline possible next steps that can be based on our
work.

Combination with Statistical and Heuristic Methods
We consider the methods developed in this chapter as exact in the sense
that they clearly and unambiguously specify the expected result. The contact
with Linked Data in the real world has shown us limitations of such exact
approaches due to the heterogeneity and the lack of quality of the data. In
the following, we outline how to overcome the limitations by combining our
work with statistical and heuristic methods.

A core feature of Linked Data Services is identity resolution by defining
equivalences between entities in the service response with entities in other

13Linking data is available online: http://people.aifb.kit.edu/ssp/geolink.tgz

22 Linked Data Management: Principles and Techniques

information sources. We built the resolution on basic graph patterns, which
provide exact descriptions of entities. An interesting idea would be to replace
the basic graph patterns by patterns in the SILK language [26], which sup-
ports heuristic conditions such as thresholds on the editing distance of labels.
Furthermore, it would be interesting to experiment with (semi-)automatic
schema alignment methods when processing Linked Data and services instead
of the static rule-based alignments that we currently use.

Alignment of Efforts for Aligning of Linked Data and Services
Our Linked Data Services approach was developed in parallel to other inde-
pendent efforts to align Linked Data and services, most notably are Linked
Open Services [15] and RESTdesc [25]. We are currently in the process of
aligning the different efforts under the label of Linked APIs. We already have
organized events together, including tutorials at international conferences and
the Linked APIs workshop in conjunction with the Extended Semantic Web
Conference 2012. For the future, it would be interesting to bring our ap-
proaches and experiences into standardization activities such as the Linked
Data Platform Working Group organized by the W3C.

Bibliography

[1] Mahmoud Barhamgi, Pierre-Antoine Champin, and Djamal Benslimane.
A Framework for Web Services-based Query Rewriting and Resolution in
Loosely Coupled Information Systems, 2007.

[2] Abraham Bernstein, David R. Karger, Tom Heath, Lee Feigenbaum,
Diana Maynard, Enrico Motta, and Krishnaprasad Thirunarayan, ed-
itors. Proceedings of the 8th International Semantic Web Conference
(ISWC’09), volume 5823 of LNCS, Washington DC, USA, 2009. Springer.

[3] Christian Bizer, Richard Cyganiak, and Tobias Gauss. The RDF Book
Mashup: From Web APIs to a Web of Data. In Proceedings of the Work-
shop on Scripting for the Semantic Web (SFSW’07) in conjunction with
the 4th European Semantic Web Conference (ESWC’07), Innsbruck, Aus-
tria, 2007.

[4] Emilia Cimpian and Adrian Mocan. Wsmx process mediation based on
choreographies. In Proceedings of the Third international conference on
Business Process Management, BPM’05, pages 130–143, Berlin, Heidel-
berg, 2006. Springer-Verlag.

[5] Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrating
XML and Web Services. Prentice Hall, 2004.

[6] Roy T. Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine, 2000.

[7] Alon Y Halevy. Answering Queries using Views: A Survey. The VLDB
Journal, 10(4):270 – 294, 2001.

[8] Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Christoph
Bussler. WSMX – A Semantic Service-Oriented Architecture. In Interna-
tional Conference on Web Services, pages 321 – 328, Orlando, FL, USA,
july 2005. IEEE Computer Society.

[9] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing
SPARQL Queries over the Web of Linked Data. In Bernstein et al. [2],
pages 293–309.

23

24 Linked Data Management: Principles and Techniques

[10] Duncan Hull, Evgeny Zolin, Andrey Bovykin, Ian Horrocks, Ulrike Sat-
tler, and Robert Stevens. Deciding Semantic Matching of Stateless Ser-
vices. In Anthony Cohn, editor, Proceedings of the 21st National Confer-
ence on Artificial Intelligence (AAAI’06) - Volume 2, pages 1319–1324,
Boston, MA, USA, 2006. AAAI Press.

[11] Kashif Iqbal, Marco Luca Sbodio, Vassilios Peristeras, and Giovanni Giu-
liani. Semantic Service Discovery using SAWSDL and SPARQL. In Pro-
ceedings of the 4th International Conference on Semantics, Knowledge
and Grid (SKG’08), pages 205–212, Beijing, China, 2008.

[12] Günter Ladwig and Andreas Harth. CumulusRDF: Linked Data Man-
agement on Nested Key-Value Stores. In Proceedings of the 7th Inter-
national Workshop on Scalable Semantic Web Knowledge Base Systems
(SSWS’11) in conjunction with the 10th International Semantic Web
Conference (ISWC’11), Bonn, Germany, 2011.

[13] Günter Ladwig and Thanh Tran. Linked Data Query Processing Strate-
gies. In Peter F. Patel-Schneider, Yue Pan, Birte Glimm, Pascal Hitzler,
Peter Mika, Jeff Pan, and Ian Horrocks, editors, Proceedings of the 9th
International Semantic Web Conference (ISWC’10) Part I, volume 6496
of LNCS, pages 453–469. Springer, Shanghai, China, 2010.

[14] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying Het-
erogeneous Information Sources using Source Descriptions. In T. M. Vi-
jayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda,
editors, Proceedings of the 22th International Conference on Very Large
Data Bases (VLDB’96), pages 251–262, Mumbai (Bombay), India, 1996.
Morgan Kaufmann.

[15] Barry Norton and Reto Krummenacher. Consuming Dynamic Linked
Data. In Proceedings of the 1st International Workshop on Consuming
Linked Data (COLD’10) in conjunction with the 9th International Se-
mantic Web Conference (ISWC’10), Shanghai, China, 2010.

[16] Mike P. Papazoglou. Web Services: Principles and Technology. Pearson
– Hall, 2007.

[17] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly
Media, May 2007.

[18] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Cristoph Bussler, and Di-
eter Fensel. Web Service Modeling Ontology. Applied Ontology, 1(1):77–
106, 2005.

[19] Sebastian Speiser. Usage Policies for Decentralised Information Pro-
cessing. PhD thesis, Karlsruhe Institut für Technologie, Fakultät für
Wirtschaftswissenschaften, 2013.

Linked Data Services 25

[20] Sebastian Speiser and Andreas Harth. Taking the LIDS off Data Si-
los. In Adrian Paschke, Nicola Henze, and Tassilo Pellegrini, editors,
Proceedings the 6th International Conference on Semantic Systems (I-
SEMANTICS’10), Graz, Austria, 2010. ACM.

[21] Sebastian Speiser and Andreas Harth. Integrating Linked Data and Ser-
vices with Linked Data Services. In Grigoris Antoniou, Marko Grobel-
nik, Elena Paslaru Bontas Simperl, Bijan Parsia, Dimitris Plexousakis,
Pieter De Leenheer, and Jeff Z. Pan, editors, Proceedings of the 8th Ex-
tended Semantic Web Conference (ESWC’11) Part I, volume 6643 of
Lecture Notes in Computer Science, pages 170–184, Heraklion, Crete,
Greece, 2011. Springer.

[22] Steffen Stadtmüller, Sebastian Speiser, Andreas Harth, and Rudi Studer.
Data-Fu: A Language and an Interpreter for Interaction with Read/Write
Linked Data. In Proceedings of the 22nd International Conference on
World Wide Web (WWW’13), Rio de Janeiro, Brazil, 2013.

[23] Snehal Thakkar, José Luis Ambite, and Craig A Knoblock. A Data In-
tegration Approach to Automatically Composing and Optimizing Web
Services. In Proceedings of Workshop on Planning and Scheduling for
Web and Grid Services at International Conference on Automated Plan-
ning and Scheduling (ICAPS’04), Whistler, British Columbia, Canada,
2004.

[24] Raphael Troncy, Andre Fialho, Lynda Hardman, and Carsten Saathoff.
Experiencing Events through User-Generated Media. In Proceedings of
the 1st International Workshop on Consuming Linked Data (COLD’10)
in conjunction with the 9th International Semantic Web Conference
(ISWC’10), Shanghai, China, 2010.

[25] Ruben Verborgh, Thomas Steiner, Davy Van Deursen, Rik Van de Walle,
and Joaquim Gabarr Valls. Efficient Runtime Service Discovery and
Consumption with Hyperlinked RESTdesc. In Proceedings of the 7th
International Conference on Next Generation Web Services Practices
(NWeSP’11), Salamanca, Spain, 2011.

[26] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. Dis-
covering and Maintaining Links on the Web of Data. In Bernstein et al.
[2], pages 650–665.

[27] W3C. OWL-S: Semantic Markup for Web Services. W3C Member Sub-
mission, 2004. Available at http://www.w3.org/Submission/OWL-S/.

[28] MD. Wilkinson, B. Vandervalk, and McCarthy L. The Semantic Au-
tomated Discovery and Integration (SADI) Web service Design-Pattern,
API and Reference Implementation. Journal Biomed Semantics, 2, 2011.

26 Linked Data Management: Principles and Techniques

[29] Wen-Feng Zhao and Jun-Liang Chen. Toward Automatic Discovery
and Invocation of Information-providing Web Services. In Riichiro Mi-
zoguchi, Zhongzhi Shi, and Fausto Giunchiglia, editors, Proceedings of the
1st Asian Semantic Web Conference (ASWC’06), number 4185 in Lec-
ture Notes in Computer Science, pages 474–480, Beijing, China, 2006.
Springer.

